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Abstract
With the increasing power of data storage and advances in data generation and collec-
tion technologies, large volumes of time series data become available and the content
is changing rapidly. This requires data mining methods to have low time complexity to
handle the huge and fast-changing data. This article presents a novel time series clus-
tering algorithm that has linear time complexity. The proposed algorithm partitions
the data by checking some randomly selected symbolic patterns in the time series. We
provide theoretical analysis to show that group structures in the data can be revealed
from this process. We evaluate the proposed algorithm extensively on all 128 datasets
from the well-known UCR time series archive, and compare with the state-of-the-
art approaches with statistical analysis. The results show that the proposed method
achieves better accuracy compared with other rival methods. We also conduct experi-
ments to explore how the parameters and configuration of the algorithm can affect the
final clustering results.

Keywords Time series · Clustering · Linear time · Symbolic representation

1 Introduction

Time series data widely exist in various scientific disciplines and industrial processes,
thus the mining of time series data has attracted substantial interest. Time series clus-
tering is one of themost important tasks in time series datamining. As an unsupervised
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technique, it does not require the data to be annotated or have class labels. Time series
clustering has been applied in a variety of domains including astronomy (Rebbapra-
gada et al. 2009), biology (Subhani et al. 2010), climate (Steinbach et al. 2003), finance
(Kumar et al. 2002), and so on (Aghabozorgi et al. 2015).

Time series clustering problem can be formulated as follows. Given a set of unla-
beled time series instances, the objective is to place them into separate, homogeneous
groups. In this article, we consider the partitional clustering problem of whole time
series, i.e. we regard a time series instance as an object and cluster the time series
objects into pairwise-disjoint groups.

With the advancement of technologies, for example, lighter, smaller and cheaper
sensors widely embedded in various devices and machines, the amount of time series
data becomes huge and the content is changing rapidly. This requires the data mining
algorithms to have low time complexity. Although there have been a wealth of work on
time series clustering, little work is on providing a linear time solution with reasonable
performance. Existing super-linear time complexity methods may not be applicable
when the dataset is large, or when real-time analytics are required.

In this article we propose a novel time series clustering algorithm, called Sym-
bolic Pattern Forest (SPF), which has linear time complexity. The approach checks
if some randomly selected symbolic patterns exist in the time series to partition the
data instances. This partition process is executed multiple times, and the partitions
are combined by an ensemble process to generate the final partition. Figure 1 shows
the framework structure of the proposed method, and the details in the figure will be
described later.

We demonstrate that group structures in the data can emerge from the random
partition process. Further analysis shows that the ensemble size needed to achieve

Fig. 1 Framework of SPF, each branch in the figure is a tree and all the branches constitute a forest
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Time series clustering in linear time complexity 2371

good results does not directly depend on the input data size, and thus we can set the
ensemble size to a proper fixed value for a specific data pattern.

The application of symbolic patterns in SPF has several benefits. Real-world time
series often contain noise, amplitude change, phase-shift and irrelevant portion of
data. The normalization step in symbolization can provide scale-invariance against
the amplitude change. In the averaging and symbolization step, some noise can be
smoothed out. The symbolic patterns do not preserve the pattern location information
in the time series, thus they are not affected by phase-shift. If a time series contains a
symbolic pattern in some portion, changing the values in other portion does not affect
the appearance of the pattern, making SPF robust against irrelevant data.

Further, the utilization of symbolic patterns makes the pattern space finite, and
we can use the symbolic patterns to partition the data without using a distance mea-
sure. Checking the boolean indicating array to assign clusters in SPF is efficient as
boolean operations are very fast. Boolean values are space-efficient which can take
more advantage of the CPU cache to speed up the program.

We evaluate the SPF algorithm on all 128 datasets in the well-known UCR time
series archive (Dau et al. 2018), and compare with other state-of-the-art approaches
with statistical analysis. The results show that SPF is better in accuracy compared with
other rival methods. We also conduct experiments to study how the parameters and
configuration of the algorithm can affect the final clustering results.

The rest of the paper is organized as follows. Section 2 provides the background
and related work. Section 3 provides the details of the proposed method and some
analysis. The experimental evaluation is presented in Sect. 4, and Sect. 5 concludes
the paper.

2 Background and related work

2.1 Definitions and notations

This subsection provides the definitions andnotations to precisely describe the problem
under investigation and to present the proposed method.

Definition 1 A time series T is a ordered sequence of real-value data points
[t1, t2, . . . , tm], where m is the length of the time series.

Definition 2 A subsequence S of time series T is a sequence of contiguous values
taken from T : S = [ti , ti+1, . . . , ti+l−1], where l is the length of the subsequence,
1 ≤ i ≤ m − l + 1 and 1 ≤ l ≤ m. All subsequences of a certain length from a time
series can be extracted using a sliding window of the same length from the first data
point to the (m − l + 1)-th point.

Definition 3 Given a set of time series {Ti }ni=1, where n is the number of time series
instances, time series partitional clustering assigns a group relationship ci for each Ti ,
with ci = r j , j ∈ {1, 2, . . . , k}. r j is a group value and k is the number of clusters.
Usually we have k � m and k � n. For presentation simplicity, we assume all the
time series in the dataset have the same lengthm. The proposed algorithm in the paper
can also work on datasets with varying-length time series.
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2.2 Related work

Some research on time series clustering is based on the k-means algorithm (MacQueen
1967). In the k-means algorithm, the clustering group relationship is generated by an
iterative refinement procedure. In initialization, k centroids are randomly selected. In
each iteration, the distances from the instances to the centroids are computed and the
instances are assigned to their nearest centroids. Centroids are then updated according
to the new assignment.

In the standard k-means algorithm, Euclidean Distance (ED) (Faloutsos et al. 1994)
is used as the distancemetric and arithmetic mean is adopted to calculate the centroids.
However, it is common for real-world time series data to contain phase-shift, warping,
distortion and amplitude change. The simple ED may not be able to cope with these
situations. Therefore, many time series distance measures are proposed (Wang et al.
2013), and one of themost popular ones is the Dynamic TimeWarping (DTW) (Berndt
and Clifford 1994) which can align the data points from the two time series under
comparison to find the optimal matching.

Methods of generating centroids under new time series distancemeasures have been
proposed. Examples of thesemethods are NonLinear Alignment andAveraging Filters
(NLAAF) (Gupta et al. 1996), Prioritized Shape Averaging (PSA) (Niennattrakul and
Ratanamahatana 2009) and Dynamic Time Warping Barycenter Averaging (DBA)
(Petitjean et al. 2011).

K-Spectral Centroid (KSC) (Yang and Leskovec 2011) proposes a distancemeasure
that finds the optimal alignment and scaling formatching two time series. The centroids
are generated to minimize the distances between the centroids and the instances under
this distance measure.

K-shape (Paparrizos and Gravano 2015) is one of the state-of-the-art time series
clustering algorithms based on k-means. It proposes a distance measure called Shape
Based Distance (SBD), which is based on the cross-correlation of the time series. The
centroids are generated by optimizing the within-cluster squared normalized cross-
correlation between the centroids and the time series instances.

Another category of algorithms on time series clustering transform the time series
into flat features and then apply classic clustering algorithms on the features to generate
the cluster assignment. In (Kumar et al. 2005), the authors transform a time series into
a bitmap, which is composed of the counts of all the symbolic patterns in time series.
The bitmap representation provides a new distance measure for the classic clustering
algorithms to run on time series data.

In the work by Zakaria et al. (Zakaria et al. 2012), the authors propose to enumerate
all the subsequences in the time series dataset to select a subset of subsequences called
U-shapelets that can best separate the data. The distances between the time series and
these subsequences are computed and regarded as new feature values. Finally k-means
is applied on the new feature values to get the clustering result. Although the shapelet-
based method and our proposed technique both use local shapes in time series for
clustering, they are quite different. The shapelet-based method adopts an iterative
procedure to refine the clusters, while the proposed algorithm directly partitions the
data and combines the partitions to get the clusters.
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In (Zhang et al. 2016), instead of enumerating all the subsequences in the time
series dataset, the shapelets are learned by optimizing an objective function.

In a recent work (Lei et al. 2019), the Similarity PreservIng RepresentAtion Learn-
ing (SPIRAL) method samples pairs of time series to calculate their DTW distances
and builds a partially-observed similarity matrix. The matrix is an approximation for
the pair-wise DTW distances matrix in the dataset. The new features are generated by
solving a symmetric matrix factorization problem, such that the inner product of the
new feature matrix can approximate the partially-observed similarity matrix.

With the popularity of deep learning in recent years, there are also methods that
adopt the autoencoder architecture for time series clustering. One example is the Deep
Temporal Clustering (DTC) (Madiraju et al. 2018). InDTC,Mean Square Error (MSE)
is used to measure the reconstruction loss, and the clustering loss is measured by a
KL divergence.

2.3 Symbolic aggregate approximation

Since our method uses Symbolic Aggregate approXimation (SAX) (Lin et al. 2007) to
transform a time series or subsequence to a symbolic pattern, we briefly describe this
technique. Figure 2 shows an example of transforming a subsequence to a symbolic
pattern (SAX word). The subsequence is z-normalized and divided into ω segments
(ω is 2 in this example). The mean value for each segment is computed (the green
line and yellow line in the figure for the two segments respectively). These mean
values are mapped to symbols according to a set of break points (the gray lines in the
figure). These break points divide the value space in equal-probable regions. In this
example the alphabet size of SAX is 4 (with an alphabet of ‘a’, ‘b’, ‘c’ and ‘d’). The
subsequence in the figure is transformed to the symbolic pattern “da”. The alphabet
size γ , number of segments (word length) ω, and subsequence length l are supplied
by the users.

3 Symbolic pattern forest

For clarity, we present a small concrete example to illustrate the idea of the proposed
method. Then we provide the formal description and analysis of the algorithm.

3.1 A concrete illustrative example

Figure 3 (Left) shows a small dataset of 4 time series instances belonging to 2 different
classes (in blue and red respectively). These time series are taken from the FaceFour
dataset from the UCR time series archive (Dau et al. 2018) and the time series in
the dataset reflect the face outlines of different individuals under different conditions
(Ratanamahatana and Keogh 2004).

Given SAX parameters γ and ω, we can enumerate γ ω all possible symbolic pat-
terns. The proposed method randomly picks a symbolic pattern from all available
patterns and, for each time series instance, checks if it contains the pattern. More

123



2374 X. Li et al.

Fig. 2 Transforming a subsequence to a symbolic pattern with Symbolic Aggregate approXimation (SAX)

Fig. 3 An illustrative example of the SPF clustering process. (Left) Time series from 2 classes. (Center)
Boolean indicating arrays of the time series on the left. (Right) Total appearance count of each pattern and
final symbolic pattern candidates

specifically, we extract all subsequences of a pre-defined length l from a time series
instance via a sliding window. Each subsequence is transformed to a symbolic pattern
and compared with the randomly chosen pattern.

This process is repeated multiple times so here we can optimize the process by
scanning the time series in the beginning and storing the appearance of each pattern

123



Time series clustering in linear time complexity 2375

in a boolean indicating array. Boolean false (0) means the pattern does not appear in
the time series, and boolean true (1) indicates the pattern appears. When checking a
specific random pattern, we can directly look at the boolean array without needing to
scan the time series again. Figure 3 (Center) shows the boolean indicating arrays for
the four time series on the left respectively.

According to whether the time series contain a certain randomly selected pattern,
the time series are partitioned into two groups. Those containing the pattern go to
one group and the others are assigned to the other group. These two groups form two
clusters. If the number of clusters k is more than 2, we perform the division with a new
random symbolic pattern on the larger group. Previously chosen symbolic patterns are
excluded from the pool of available pattern candidates. This process continues until
we obtain k clusters, and the tree constructed from the procedure is called Symbolic
Pattern Tree (SPT).

The above procedure are repeated multiple times with randomly selected patterns,
and multiple trees are constructed as a result, hence the name Symbolic Pattern Forest
(SPF). Each tree is a partition of the data, and we combine the partitions in the forest
by ensemble to get the final output partition.

The main idea of the symbolic pattern tree is that it uses a symbolic pattern to
separate different time series groups. If a pattern appears in all the instances, it cannot
separate the instances and thus we can exclude it from the symbolic pattern candidate
pool. The same applies to the patterns that do not appear in any instances.

In SPF, the number of time series instances that contain the pattern in the dataset is
counted, and the patterns with a count greater than an upper bound or less than a lower
bound are excluded from the symbolic pattern candidate pool. The settings of these
two bounds will be introduced later. Figure 3 (Right) shows the total occurrence count
of each pattern in the dataset, as well as the final symbolic pattern candidate “da”. SPF
will select “da”, which can separate the two classes into two clusters correctly.

3.2 SPF algorithm

3.2.1 Cluster ensemble

In SPF, each SPT generates a cluster assignment for all the time series instances,
and these clusters are combined by ensemble to generate the final cluster assignment.
Hybrid Bipartite Graph Formulation (HBGF) (Fern and Brodley 2004), which has a
linear time complexity, is adopted in SPF to perform the cluster ensemble. The idea
of HBGF is to build a graph model where the instances and clusters of the ensemble
are the vertices. Partitioning the graph generates the ensemble consensus clusters. In
our implementation, we use Metis (Karypis and Kumar 1998) to partition the graph.

Figure 4 gives an concrete example of combining two clustering assignments to
show the idea of HBGF. The upper part of the figure shows the cluster-instance rela-
tionship of the clustering A and the lower part gives the cluster-instance relationship of
clustering B. If an instance (gray circle in the figure) belongs to a certain cluster (oval
in the figure), there is a black line connecting the respective instance and cluster. The
cluster-instance relationship in the figure forms a graph where the circles and ovals
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Fig. 4 An illustrative example of HBGF

are the vertices, and the black lines are the edges. HBGF then partitions this graph
(red dashed line) to obtain the ensemble partition of the two clustering partitions A
and B.

3.2.2 Efficient SAX computation

In SPF, we need to compute the SAX symbolic pattern of each subsequence in the
time series. The cumulative sum technique proposed for BOPF (Li and Lin 2017) is
applied to calculate the symbolic pattern of an arbitrary subsequence in O(1) time
(given the cumulative sums). The cumulative sum series U and cumulative squared
sum series V of a time series T can be computed as: u j = ∑ j

i=1 ti , v j = ∑ j
i=1 t

2
i ,

where j = 1, . . . ,m and u0, v0 are set to 0.
For a subsequence x = [ti , . . . , ti+l−1], the mean value μx and standard deviation

σx can be calculated as: μx = (ui+l − ui−1)/l, σx = √
(vi+l − vi−1)/l − μ2

x . x is
divided inω segments and each of the segment is mapped to a symbol. The normalized
mean value of a segment y = [ti , . . . , t j ] is μy = ((u j −ui−1)/( j − i +1)−μx )/σx .
Then μy is mapped to a fixed break points region and transformed to a respective
symbol (Lin et al. 2007).

3.2.3 Parameters of SAX

In SAX, the number of segmentsω, alphabet size γ , and subsequence length l are user-
set parameters. In SPF, γ is set to 4 as previous research (Lin et al. 2007) suggests this
value is suitable for most datasets. A grid search on the combinations of ω and l is per-
formed. Each combinationwill generate a cluster assignment and all these assignments
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Algorithm 1 Symbolic Pattern Forest (SPF)
Input:

D: time series dataset
q: ensemble size
k: number of clusters

Output:
C : cluster assignment of D

1: T = loadData(D)

2: [U , V ] = CumulativeSum(T )

3: for each ω ∈ wd do
4: for each l ∈ wl do
5: SP = SymbolicPattern(T , ω, l,U , V )

6: PC = PatternCount(SP)

7: SPC = FindCandidates(PC)

8: for i = 1 to q do
9: CA = SPT (SPC, SP, k)
10: ES.add(CA)

11: end for
12: CA2 = Ensemble(ES)

13: ES2.add(CA2)
14: end for
15: end for
16: C = Ensemble(ES2)

are combined by ensemble to give the final algorithm output. ω takes the values from
wd = {3, 4, 5, 6, 7} and l takes the values from wl = {0.025, 0.05, 0.075, . . . , 1}m,
i.e. an arithmetic sequence from 0.025m to m with a common difference of 0.025m,
where m is the length of the time series. Duplicate values and values less than 10 are
removed. In total at most 200 l and ω combinations are tested.

Algorithm 1 gives the pseudo-code of SPF. Given a time series dataset D, an
ensemble sizeq and the number of clusters k, the algorithm returns a cluster assignment
C as output.

In Line 1, the dataset D is loaded and stored in T . Line 2 computes the cumulative
sum U and cumulative squared sum V from T , which will be used to calculate the
symbolic patterns. Lines 3-4 perform the grid search on ω and l as discussed before.
Line 5 calculates the symbolic pattern appearance indicating boolean array SP . Line
6 counts the number of occurrence of each symbolic pattern and stores the result in
PC . Line 7 takes the pattern count PC to select the symbolic pattern candidate SPC
that will be used in the SPT random selection process. The patterns that have a count
greater than an upper bound or less than a lower bound are removed from the candidate
pool. In our method, we set the lower bound to 0.25 × n/k where n is the number of
instances and k is the number of clusters. The upper bound is set to n − 0.25 × n/k.
These bounds are set so as to remove non-distinguishing patterns according to our
experiments.

In Lines 8-11, SPT uses the symbolic pattern candidates to generate a cluster assign-
mentCA, andCA is added to an ensemble set ES. This process is repeated q times. In
Line 12, we combine the cluster assignments in ES by ensemble and get the consensus
cluster assignment CA2. CA2 is added to the ensemble set ES2 in Line 13. Finally in
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Algorithm 2 Symbolic Pattern Tree (SPT)
Input:

SPC : Symbolic Pattern Candidate
SP: Symbolic Pattern appearance indicating arrays
k: number of clusters

Output:
CA: Cluster Assignment

1: CA = ini tiali ze(SP, k)
2: curent Node = SP
3: for i = 1 to k − 1 do
4: RSP, SPC = randomSelect(SPC)

5: Le f t, Right = parti tion(curent Node, RSP)

6: CA = setCluster(CA, Le f t, i)
7: curent Node = Right
8: end for

Line 16, the cluster assignments in ES2 is combined by ensemble to obtain the final
cluster assignment C as the output of the algorithm.

One purpose of using ES is to reduce the space cost of the algorithm. If the algorithm
does not ensemble the partitions in ES and instead saves them in ES2, it then needs
to store the q partitions for each time series instances for all the SAX parameter
combinations. Theother consideration of using ES is to prevent certainSAXparameter
combinations from dominating the final ensemble. For example, one certain parameter
combinationmayhave the sameq partitions, inwhich case, this partitionmaydominate
the final ensemble.

Algorithm 2 gives the pseudo-code of the function SPT used in Algorithm 1, and
the idea of SPT is introduced in the previous Sect. 3.1. In Line 1 the array CA is set to
represent the cluster assignment. Its length equals the number of time series instances
and the array initial values are set to equal k. In Line 2, the current node of SPT is set
to contain all the symbolic pattern indicating array instances SP .

In Lines 3-8, in each loop a Random Symbolic Pattern (RSP) is randomly selected
from SPC , and this RSP is then removed from SPC . The RSP is used to partition
the instances in the current node (Line 5). Those instances containing the RSP form
one group and the others constitute another group. The smaller group is assigned to
the left node (Le f t) and the larger one becomes the right node (Right). In Line 6,
the cluster labels of instances in the left node in CA are set to equal the current loop
iteration number i . The right node (Right) becomes the current node in Line 7. After
the loops end, CA is the output of SPT.

3.3 Analysis of SPF

3.3.1 Time complexity

Recall n denotes the number of time series instances, andm denotes the length of time
series. The number of clusters, k, is considered as a constant much smaller than m
and n. In Algorithm 1, the computation of cumulative sums takes O(nm) time. The
number of grid search combinations is at most 200. It takes O(nm) time to obtain the
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symbolic pattern boolean indicating arrays and the symbolic pattern candidates. SPT
takes O(n) time and the ensemble process also takes O(n) time. So the total time
complexity of SPF is O(nm), which is linear to the input data size.

3.3.2 Effectiveness of SPF

In this subsection, we show that if there exists a group structure in the dataset related
to one pattern or some patterns, then SPF will output such group relationship. The
intuition is that the unrelated patterns distribute uniformly among the instances so
their effects cancel each other out in the ensemble, and only the structure on the
related patterns is maintained and revealed. More formally, We have the following
theorem:

Theorem 1 Consider two instances T1 and T2 in the same class, if they agree with
each other on some related patterns, then SPF will put them in the same cluster.

Proof Assume β is the percentage of related patterns in the symbolic candidate
patterns. In the random selection process, if a related pattern is selected, then
P(C(T1) = C(T2)) = 1, where P(·) is the probability function and C(·) is the
cluster assignment function. If an unrelated pattern is selected, P(C(T1) = C(T2)) =
P(C(T1) �= C(T2)) = 1/2. So overall P(C(T1) = C(T2)) = β × 1 + (1 − β) × 1/2
and P(C(T1) �= C(T2)) = (1 − β) × 1/2. We have:

P(C(T1) = C(T2)) > P(C(T1) �= C(T2)) (1)

Each tree is independent, according to the law of the large numbers, when we have
sufficiently large ensemble size:

Count(C(T1) = C(T2)) > Count(C(T1) �= C(T2)) (2)

where Count(C(T1) = C(T2)) is the count of cases that T1 and T2 are in the same
cluster. So in the ensemble result, T1 and T2 are assigned in the same cluster. ��

In the above analysis, we assume the ensemble size is sufficiently large. The fol-
lowing theorem quantifies how large the size should be.

Theorem 2 Assume the ensemble size is q, the lower bound of q to obtain a good
clustering result is −2 ln α/β2, where 1-α is the confidence level, β is the related
pattern percentage in the symbolic pattern candidate pool.

Proof Let X denote the random variable where there are X cases withC(T1) = C(T2).
Then X follows the binomial distribution:

P(X = z) =
(
q

z

)

pz(1 − p)q−z (3)
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where p = P(C(T1) = C(T2)). Equation (2) should hold with high probability, so
our goal can be formulated as:

P(X ≤ z) =
z∑

i=0

(
q

i

)

pi (1 − p)q−i ≤ α (4)

where z = q/2, 1−α is the confidence level, e.g. 95%. Here considering Hoeffding’s
inequality (Hoeffding 1994):

P(E[X̄ ] − X̄ ≥ t) ≤ e−2qt2 (5)

where t ≥ 0. Considering E[X̄ ] = p, we have:

P(E[X̄ ] − X̄ ≥ t) = P(qE[X̄ ] − q X̄ ≥ qt) (6)

= P(X ≤ qp − qt) ≤ e−2qt2 (7)

Let z = qp − qt , we have t = (qp − z)/q:

P(X ≤ z) ≤ e−2(qp−z)2/q ≤ α (8)

Recall z = q/2, p = β × 1 + (1 − β) × 1/2, we can solve the above inequality and
get:

q ≥ −2 ln α

β2 (9)

��
Here is a concrete example of this boundary value: let the confidence level be 99%

and assume 50% of the patterns in the pattern candidate pool are related patterns. So
α = 0.01 and β = 0.5, we get q ≥ 36.84.

One observation from equation (9) is that the ensemble size lower bound does
not directly depend on the number of instances n and time series length m. In the
experimental section, we will show that the accuracy results indeed do not change
with fixed ensemble size and varying instances numbers and time series lengths, given
the same data characteristics.

4 Experimental evaluation

4.1 Experimental setup

To evaluate the proposed algorithm, we run it on all 128 datasets from the UCR time
series archive (Dau et al. 2018). This public archive contains different types of labeled
time series from various fields. Each dataset in the archive contains a training set and
a testing set. We fuse both sets and use all the data in the experiments. Some datasets
contain varying-length time series. We append zeros at the end of the series so that
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all time series in a dataset have the same length. While our proposed algorithm also
works for time series of different lengths, we adjusted the length for the convenience
of experiments as some of the compared methods require such input condition. The
“NaN” values in some datasets are replaced by the respective interpolation values.

The results of SPF are compared with other rival methods. The widely used k-
means algorithm (MacQueen 1967) is selected as the baseline. Standard k-means
adopts ED as the distance metric and uses arithmetic mean to calculate centroids.
kDBA (Petitjean et al. 2011), KSC (Yang and Leskovec 2011), k-shape (Paparrizos
and Gravano 2015), SPIRAL (Lei et al. 2019), DTC (Madiraju et al. 2018) are also
run on the same datasets. These methods are described in Sect. 2 and are used as
representatives of the state-of-the-arts.

The source code of k-means, kDBA, KSC, k-shape are obtained from the authors of
(Paparrizos and Gravano 2015). The source code of SPIRAL1 and DTC2 is available
online. The number of clusters k is set to equal the number of classes of the dataset
in use, and we follow the default parameter settings in the source code. The ensemble
size of SPF is set to 100 in all the experiments.

Following (Paparrizos and Gravano 2015), we use the Rand Index to measure the
accuracy of the clustering results. Rand Index is defined as:

Rand Index = T P + T N

T P + T N + FP + FN
(10)

where T P is the number of instances belonging to the same class and assigned in
the same cluster, T N is the number of instances belonging to different classes and
assigned in different clusters, FP is the number of instances belonging to different
classes but assigned in the same cluster, and FN is the number of instances belonging
to the same class but assigned in different clusters.

To verify the time complexity of SPF, we run it on the widely used CBF dataset
(Saito and Coifman 1994) of different sizes and record the average running time for
each size. This dataset is a synthetic dataset, so with its underlying data generation
rules in (Saito and Coifman 1994), we can conveniently generate the datasets with
different number of instances and time series lengths.

The C++ source code of SPF is available in the supplementarymaterial3. The exper-
iments are conducted in a batch-processing cluster. A single core of AMD Opteron
Processor 6276 (2299 MHz) and 16 GB memory are used.

4.2 Experimental results

The methods under comparison are run on the 128 datasets and the Rand Index for
each dataset are recorded. The results of SPF are the average results of 10 runs. Due to
space limitation, the results for each dataset are not listed here and all the results are
available in the supplementary material3. Here we present the summarization of the

1 https://github.com/cecilialeiqi/SPIRAL
2 https://github.com/FlorentF9/DeepTemporalClustering
3 https://github.com/xiaoshengli/SPF-DMKD
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Fig. 5 Critical difference diagram of the comparison on Rand Index with other methods

comparison. Figure 5 shows the critical difference diagram (Demšar 2006) (at 95%
confidence level) for the Rand Index comparison. The value beside each method in
the figure is the rank mean (lower is better) for the respective method. The methods
that are connected by a bold bar have no significant difference at the 95% confidence
level.

From the figure one can see the accuracy of SPF is better than that of k-shape, but
the difference is not significant. SPF is significantly better than all the other methods:
kDBA, KSC, SPIRAL, and DTC. So the overall accuracy of SPF is superior compared
to the state of the art techniques.

The timecomplexities of k-means, k-shape andSPFareO(nm),O(max(nm2,m3)),
and O(nm) respectively. Compared with k-means, SPF has the same time complexity
but is significantly more accurate. Compared with k-shape, SPF has lower time com-
plexity and slightly better accuracy. The total actual running time of k-means, k-shape
and SPF on the 128 datasets are 1579, 44765, 2033 seconds (or 26.3, 746.1 and 33.9
minutes) respectively. Note that these methods are implemented in different languages
so these time values just show how fast we can cluster the data using the available
source code.

Figure 6 shows the average running time of SPF on the CBF datasets. The number
of instances is changed from 1000 to 10000 and the length of time series is fixed at
1000. In the figure, the x-axis value is the number of instances and the y-axis value
is the average running time of 30 runs. Linear regression curve fitting is performed
on the data and the black line in the figure is the fit line. From the figure one can see
the R2 value, which is the coefficient of determination of the fitting, is 0.99356. This
value is very close to 1, indicating the average running time of SPF and the number
of instances have a strong linear relationship.

Figure 7 gives the average running time of SPF on the CBF datasets of different
lengths. The number of instances is fixed at 1000 and the length is changing from 1000
to 10000. Each time value in the figure is the average time of 30 runs. The coefficient of
determination R2 value is 0.99923. This value is very close to 1, indicating the average
running time of SPF and the length of time series have a strong linear relationship.
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Fig. 6 Running time of SPF on different number of instances

Fig. 7 Running time of SPF on different time series lengths

The above results coincide with the time complexity analysis in Sect. 3.3. Also,
in the experiments we record the average Rand Index of SPF on different number
of instances and time series lengths combinations. The Rand Index values remain
the same at 1 under all the cases. The ensemble size is fixed in the experiment, and
this result is in accord with the analysis in Sect. 3.3, that given the data has the same
underlying pattern distribution, the ensemble size to obtain good accuracy results does
not directly depend on the number of instances or time series lengths.
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Figure 8 shows a visual example of how the time series from different classes
are partitioned correctly in the SPF process. The left column contains 4 time series
instances as well as the total appearance count of each symbolic pattern. The 4 time
series belong to 4 different classes from the dataset FaceFour which is one of the 128
tested datasets. The right column of the figure gives the boolean indicating arrays for
the respective time series on the left, which shows the appearance of each symbolic
pattern in the time series. In this example the number of segments ω is set to 3 and the
subsequence length l takes the value of 26. This parameter combination is one of the
SAX parameter combinations used in the actual SPF algorithm.

The symbolic patterns in the figure from left to right are from “aaa”, “aab”, . . .,
to “ddc” and “ddd” in an ascending alphabetical order. The number of segments, or
SAX word length, is 3 and the alphabet size γ is 4, so in total there are 43 = 64
symbolic patterns. The symbolic pattern names are not showed in the figure to avoid
overcrowding.

The 4 red vertical dashed lines in the figure align the locations of 4 symbolic pattern
candidates in SPC and in each boolean indicating arrays, i.e. each red dashed line
connects the same symbolic pattern vertically. From the figure, one can see that each
of the 4 aligned symbolic pattern candidates appears only in one of the four classes
respectively. More concretely, the left most candidate symbolic pattern appears only
in Class 4; the second left most candidate symbolic pattern appears only in Class 2
and so on. So in the SPF process, using these symbolic patterns can partition the 4
classes from each other correctly.

4.3 Parameter study

This subsection presents the experimental results for exploring the effects of the param-
eters and configuration in SPF. The results in this subsection are all average results
of 10 runs with different random seeds. In the above experiments, we set the ensem-
ble size of SPF to 100. Here we halve and double the ensemble size to 50 and 200
respectively. The two SPF versions are denoted as SPF-e50 and SPF-e200 respectively.
We run SPF-e50 and SPF-e200 on the 128 datasets and Fig. 9 shows the comparison
between SPF and these two versions.

From thefigure, one can see that the three versions donot have significant difference.
This shows that changing the ensemble size in a certain range does not affect the results
significantly on the tested datasets.

SPF adopts SAX to transform time series into symbolic patterns and there are two
parameters in the SAX configuration: the number of segments (word length) ω, and
subsequence length l. In SPF, ω takes the values from wd = {3, 4, 5, 6, 7} and l takes
the values from wl = {0.025, 0.05, 0.075, . . . , 1}m, i.e. an arithmetic sequence from
0.025m to m with a common difference (i.e. the step size) of 0.025m, where m is
the length of the time series. We change the common difference of 0.025m for l to
0.01m and 0.05m. The respective two versions are SPF-l01 and SPF-l05. We also vary
ω to {3, 4, 5, 6} and {3, 4, 5, 6, 7, 8} and the two variants are denoted as SPF-d4 and
SPF-d6 respectively.
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Fig. 8 A visual example of time series from different classes are partitioned correctly in the SPF process.
(Left) 4 time series from 4 classes in the tested dataset FaceFour as well as the total appearance count for
each symbolic pattern . (Right) Boolean indicating arrays of the respective time series on the left and the
Symbolic Pattern Candidates SPC

Fig. 9 Critical difference diagram of the comparison between different ensemble sizes (SPF-e50 and SPF-
e200)

Figure 10 gives the comparison between SPF, SPF-l01 and SPF-l05 on Rand Index.
Figure 11 shows the comparison between SPF, SPF-d4 and SPF-d6. From Fig. 10 one
observes that SPF-l01 is slightly better than SPF and SPF-l05 is slightly worse than
SPF. This shows that decreasing the common difference, or enlarging the subsequence
length set wl can slightly improve the accuracy of SPF. From Fig. 11 one can see that
SPF is significantly better than SPF-d4 and significantly worse than SPF-d6. This
shows that enlarging the word length set can enhance the accuracy of SPF.

Enlarging the subsequence length set or the word length set can make the SAX
symbolic patterns capture more information from the raw time series, thus improve
the accuracy of SPF. However, the improvement is at the expense of higher running
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Fig. 10 Critical difference diagram of the comparison between different SAX subsequence length settings
(SPF-l01 and SPF-l05)

Fig. 11 Critical difference diagram of the comparison between different SAXword length settings (SPF-d4
and SPF-d6)

Fig. 12 Critical difference diagram of the comparison between different pattern candidate lower bound
settings (SPF-p15 and SPF-p35)

time. The average running time on all 128 datasets for SPF-l05, SPF, and SPF-l01
are 1014, 2033, and 4391 seconds (or 16.9, 33.9 and 73.2 minutes) respectively. The
average running time on all 128 datasets for SPF-d4, SPF, SPF-d6 are 1262, 2033, and
2491 seconds (or 21.0, 33.9 and 41.5 minutes) respectively.

In SPF, the pattern candidate lower bound is set to 0.25×n/k where n is the number
of instances and k is the number of clusters. The symbolic patterns that have counts in
the dataset less than the lower bound are removed from the symbolic pattern candidate
pool. To study the effect of this lower bound value, we change it to 0.15 × n/k and
0.35 × n/k, and the respective SPF versions are SPF-p15 and SPF-p35. Figure 12
provides the comparison between SPF, SPF-p15, and SPF-p35 on the 128 datasets.

We can see from the figure that either increasing or decreasing the lower bound
value deteriorates the accuracy performance of SPF. If the lower bound value is too
small, some noisy symbolic patterns that only appear in a few time series instances
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will go to the candidate pool. Then they may be selected in the random process and
used to partition the time series dataset. This will not bring meaningful results, thus
decrease the accuracy of SPF. If the lower bound value is too large, some symbolic
patterns that can separate the time series into correct groups may be excluded from
the candidate pool, which will harm the clustering of SPF.

5 Conclusion

This article presents a Symbolic Pattern Forest (SPF) algorithm for time series clus-
tering. The method partitions the time series instances by checking some randomly
selected symbolic patterns and the partitions of multiple runs are combined to give
a final cluster assignment. Analysis is conducted on the time complexity and effec-
tiveness of the algorithm. We evaluate the algorithm extensively on all 128 datasets
from the UCR time series archive and the results show that SPF is very competitive
compared with other rival methods.

In this work we consider the univariate time series clustering problem but the
algorithm can be extended to handle multivariate time series data naturally. One
straight-forward way is to use the symbolic patterns in all the dimensions to form
the symbolic candidate pool and other parts of the algorithm remain unchanged. In
this way the algorithm can cluster multivariate data and the linear-time complexity
property can be preserved. Other methods to deal with multivariate data could also
work and we plan to explore them in the future.
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